
Neuroprotective Properties and Mechanisms of Resveratrol in in
Vitro and in Vivo Experimental Cerebral Stroke Models
Nilendra Singh,†,§ Megha Agrawal,†,§ and Sylvain Dore*́,†,‡

†Department of Anesthesiology and ‡Departments of Neurology, Psychiatry, and Neuroscience, University of Florida, College of
Medicine, Gainesville, Florida 32610, United States

ABSTRACT: Resveratrol, a natural stilbene present at relatively high
concentrations in grape skin and seeds and red wine, is known for its
purported antioxidant activity in the vascular and nervous systems. In contrast
to its direct antioxidant role within the central nervous system, recent research
supports a protective mechanism through increasing endogenous cellular
antioxidant defenses, which triggers a cascade of parallel neuroprotective
pathways. A growing body of in vitro and in vivo evidence indicates that
resveratrol acts through multiple pathways and reduces ischemic damage in
vital organs, such as the heart and the brain, in various rodent models. Most of
the protective biological actions of resveratrol have been associated with its
antioxidative, anti-inflammatory, and antiapoptotic properties and other
indirect pathways. Continued public interest and increasing resveratrol
supplements on the market warrant a review of the available in vitro and in vivo
science reported in the stroke-related literature. Rigorous clinical trials evaluating the effects of resveratrol in stroke are absent,
though the general population consumption appears to be relatively safe. Resveratrol has shown potential for treating stroke in
laboratory animals and in vitro human cell studies, yet there is still a need for human research in preclinical settings. This review
summarizes many of the findings on the neuroprotective potential of resveratrol in cerebral stroke, focusing on both the in vitro
and in vivo experimental models and some proposed mechanisms of action.
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■ INTRODUCTION

An expanding body of preclinical evidence suggests that
resveratrol has the potential to impact a variety of human
diseases. In order to translate encouraging experimental
findings into human benefits, more research is needed on the
complementary nature of in vivo and in vitro studies. In vitro
studies permit rapid screening for interactions, which are likely
to be clinically meaningful, and can also be used to evaluate
mechanism of action after animal studies; in vivo studies
confirm or reject the in vitro prediction. The vast majority of
the published studies on resveratrol performed with in vitro or
in vivo models highlight its potential applications in the
prevention and treatment of various disorders through multiple
mechanisms of action that may be related to its health benefits.1

Here, we review the findings on the neuroprotective potential
of resveratrol from in vitro and in vivo stroke experimental
models and multiple mechanisms of action that may be related
to its health benefits through either direct or indirect
antiapoptotic, anti-inflammatory, and antioxidative routes
(Figure1). This summary also helps to clarify the relationships
among in vitro potency with respect to mechanism of action,
drug concentration, and in vivo efficacy in clinical and
preclinical findings.
Resveratrol (3,5,4′-trihydroxystilbene) is a polyphenolic

phytoalexin that occurs naturally in various edible plants.2

Resveratrol is composed of two aromatic rings connected by a

styrene double bond that allows it to exist in trans- and cis-
isomers.3,4 trans-Resveratrol is the preferred steric form and is
recognized to have greater biologic activity if it is protected
from high pH and UV light.
A popular epidemiological study suggested that the French

population has a relatively low incidence of coronary heart
disease, despite having a diet relatively rich in saturated fat. This
phenomenon has been termed the “French paradox”.5,6

Resveratrol has been identified as a potential factor responsible
for the French paradox.7,8 In recent years, this molecule has
received considerable attention for its anti-inflammatory,9,10

antiapoptotic,11,12 antioxidative,13,14 antidiabetic,13,15 antivi-
ral,16,17 and cardioprotective18,19 properties.
Stroke injury initiates and activates multiple distinct but

overlapping biochemical and molecular cascades, which lead to
cell survival and cell damage. Figure 2 briefly describes the
complex pathophysiology of stroke injury, which can be linked
clinically to pathologic disturbances. Following stroke insult,
there is compromised blood flow to the brain leading to
reduced oxygen and ATP levels, followed by excitotoxicity and
energy failure. At the same time, these cells generate free
radicals, which lead to membrane, protein, and DNA damage

Received: April 22, 2013
Accepted: June 11, 2013
Published: June 11, 2013

Review

pubs.acs.org/chemneuro

© 2013 American Chemical Society 1151 dx.doi.org/10.1021/cn400094w | ACS Chem. Neurosci. 2013, 4, 1151−1162

pubs.acs.org/chemneuro


and also modulate intracellular cell signaling. Thus, to re-
establish and restore cellular function the most therapeutic
intervention should be started as soon as possible after the
stroke injury.20,21 Neurogenesis, following stroke, has been
induced using stem cells. It is a complex process, precisely

regulated by undifferentiated neuronal precursor cells and
differentiated neurons within the adult brain. Differentiation
and proliferation of neuronal stem cells in the brain will be
beneficial for injured and declining brain functions with age. A
recent study has suggested that human induced pluripotent
stem (iPS) cells differentiate into functional neurons and
enhance functional recovery after ischemic stroke in mice.22

Studies have also suggested that resveratrol up-regulates and
modulates this differentiation and can lead to adult neuro-
genesis by activating the SIRT1 signaling pathway.23,24

■ BIOAVAILABILITY AND METABOLISM OF
RESVERATROL

Resveratrol, a lipophilic and phenolic compound, will cross the
plasma membrane and is absorbed when given orally.25,26 It is
metabolized in the body and can interact with and modulate
phase I P450 enzymes CYP1A2, CYP3A4, and CYP2D6 and
phase II enzymes glutathione S-transferase (GST) and
catechol-O-methyltransferase (COMT).25,26 The pharmacoki-
netic studies on humans and extrapolation from human cell
lines suggest that 25 mg of oral resveratrol is absorbed
significantly via trans-epithelial diffusion. Resveratrol has a half-
life of approximately 9 h and peak active metabolite plasma
concentration of approximately 2 μM.27−29 The high and
extensive metabolism of resveratrol in the intestine and liver
results in approximately 1% bioavailability of the parent
compound.28,30 Interestingly, the bioavailability of resveratrol
is reported to be higher during the morning hours because of
circadian cycle, an important consideration for dosing
schedules.31−33 Resveratrol metabolites and polymers remain
in the plasma much longer than unconverted resveratrol,
whereas methylated resveratrol remains in the bloodstream for
an even a longer period, a property that has been exploited in
the drug development of resveratrol analogues.34

In vivo studies indicate that resveratrol is absorbed and
distributed to a number of highly perfused tissues (i.e., liver,
kidney, heart, and brain) and in the plasma, depending on the
exposure time and concentration.30,35,36 Resveratrol can also be
rapidly conjugated into monosulfate and disulfate forms and
can be entirely metabolized within 8 h in human hepatocyte
and HepG2 cells.37,38 Some of the most abundant metabolites
of resveratrol in mammals are resveratrol-3-sulfate, resveratrol-
3-O-glucuronide, and dihydro-resveratrol; however, they are
not fully characterized.28 Other additional metabolites have
been identified and characterized as novel resveratrol-C/O-
conjugated digluocuronides.39 In vitro studies indicate that 50−
98% of total resveratrol binds noncovalently to albumin, low-
density lipoprotein, and hemoglobin.40,41 In humans, approx-
imately 50% of resveratrol metabolites are transported in
plasma bound proteins.39 Kidneys are the dominant excretion
pathway with urinary and fecal recovery of total resveratrol
between 70% and 98% within 24 h.42,43

Resveratrol has been studied in 40 healthy subjects from
single to 29 repeated doses, and results indicate that resveratrol
is quite tolerable with mild side effects of nausea and
headache.44,45 Occasionally, moderate diarrhea was also
reported at higher doses compared with placebo.44,46 Thus,
because resveratrol is a pleiotropic polyphenol in vivo, it is likely
that some of the activities that contribute to its native state will
be because of its metabolites with the limitation of low
bioavailability and rapid metabolism.

Figure 1. Potential targets associated with anti-stroke activity of
resveratrol. Resveratrol exhibits therapeutic response against stroke by
preventing brain infarct, edema, mitochondrial dysfunction and
cognitive and motor impairment. Furthermore, it diminishes nitro-
sative, oxidative, and DNA damage, which leads to preclusion of
apoptosis and neuroinflammation.

Figure 2. Schematic image showing pathophysiology of stroke-induced
damage, endogenous repair, and regeneration. Adapted and modified
from refs 20 and 21. Reduced blood to the brain during stroke initially
affects neuronal activity and subsequently influences the metabolic and
structural activity of the affected area. Several signaling cascades are
activated that may be neuroprotective or detrimental to the ischemic
brain. This progresses in an overlapping manner and is governed by
the duration and intensity of the insult. Ischemic cascade is initiated
within minutes of declined blood flow resulting in energy failure,
glutamate-induced excitotoxicity, calcium overload, depolarization of
the cells, and generation of free radicals. Inflammatory signaling is
initiated within an hour of brain injury, and blood−brain barrier is
disrupted during transition from ischemia to inflammation leading to
edema and cell death. At the same time, cells initiate endogenous
neuroprotective pathways to combat ischemic injury. The fate of brain
cells are determined by the extent and duration of the event and the
area affected by reduced blood supply. If ischemia is for longer
duration, this will lead to cell death and irreversible brain damage. This
review suggests that resveratrol can serve as a potential therapeutic
target because it regulates and, to some extent, inhibits the detrimental
pathways that are activated following injury and also up-regulates
endogenous repair and regeneration processes.
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■ EVIDENCE OF RESVERATROL NEUROPROTECTIVE
PROPERTIES: IN VITRO MODELS OF STROKE

Resveratrol was shown to provide protection from hypoxic and
toxic insults in ex vivo endothelial and primary neuronal
cultures (Table 1). For example, cellular damage induced by
prolonged hypoxia in hippocampal slice cultures or endothelial
cells was effectively attenuated by resveratrol.47,48 Oxygen and
glucose deprivation (OGD) is an in vitro model of hypoxia−
ischemia.49 In hippocampal slice cultures derived from 6−8 day
old pups, 50 μM resveratrol has been shown to reduce OGD-
induced cell death due to the activation of phosphatidylinositol
3′-kinase/Akt (PI3K/Akt pathways). This mechanism of
resveratrol induced neuroprotection was delineated with
LY294002, a PI3K inhibitor, but not by mitogen activated
protein kinase inhibitor.47 The stimulation of Akt and
extracellular signal regulated kinase-1 and -2 (ERK1/2) and
inactivation of glycogen synthase kinase-3β (GSK-3β) were also
evident with resveratrol treatment.47,48 Another study has
shown that murine primary neurons exposed to OGD
recovered optimal histone H3 acetylation with 30 μM
resveratrol treatment.50 Resveratrol at 25 μM concentration
effectively protected rat pheochromocytoma derived (PC12)
cells from the pro-oxidant properties of diethylene triamine
pentaacetic acid-iron(II) (DTPA-Fe2+) and tert-butyl hydro-
peroxide (t-BuOOH) induced cell death.51 In midbrain slice
cultures from neonatal rat, resveratrol (10−100 μM) prevented
dopaminergic neuronal cell death from 1-methyl-4-phenyl-
pyridium, sodium azide, thrombin or N-methyl-N′-nitro-
guanidine induced neurotoxicity. This resveratrol-mediated
neuroprotection was due to reduced reactive oxygen species
(ROS) and a significant increase in cellular glutathione
levels.52,53

As low as 5 μM of resveratrol has been shown to protect the
neuroblastoma cell line SH-SY5Y against the cytotoxicity
caused by 300 and 500 μM dopamine.54 Further, cell death
due to kainate/glutamate toxicity in cortical and hippocampal
neurons was abolished by pretreatment with resveratrol.55,56 N-
Methyl-D-aspartate (NMDA) mimics the action of glutamate

on the NMDA receptor and the accompanying cell death after
exposure, and pretreatment with resveratrol has been shown to
attenuate the toxicity of NMDA exposure.57 Similarly, primary
cortical neuron cultures treated with 5−100 μM resveratrol
showed protection against NMDA-induced neuronal cell death
by inhibiting the elevation of intracellular calcium and ROS.48,57

Resveratrol protected the hippocampal neuronal HT22 cell
line, subjected to oxidative stress and neurotoxicity by high
exposure to glutamate, by reducing the mitochondrial oxidative
stress and damage through induction of the expression of
mitochondrial superoxide dismutase 2 (SOD2).55 This
induction of SOD2 was mediated through the activation of
PI3K/Akt and GSK-3β/β-catenin signaling pathways. Resver-
atrol alone (5−100 μM) increased the expression of heme
oxygenase 1 (HO1) in neuron cultures, suggesting that
induction of HO1 could be one of the cellular mechanisms
responsible for neuroprotection.58 In HT22 neuronal cells,
reduced glutamate-induced cytotoxicity and increased HO1
expression was observed with 5, 10, and 20 μM resveratrol
treatment in a concentration-dependent manner. This
cytoprotection afforded by resveratrol was partially reversed
by the specific inhibition of HO1 expression by HO1 small
interfering RNA.59 This suggests that the cytoprotective effect
of resveratrol was at least in part associated with HO1
expression in HT22 neuronal cells. Similarly, a recent study by
same group has published the cytoprotection by piceatannol
(3,5,4′,3′-trans-trihydroxystilbene), one of the resveratrol
metabolites, through HO1 in HT22 cells from glutamate-
induced oxidative stress.60 One likely pathway that we propose
in promoting neuronal survival involves increased activity of
HO1 through activation of the transcriptional factor Nrf2
(originally named nuclear factor erythroid 2-related factor
2).61,62

Table 1 summarizes the in vitro examples of resveratrol
neuroprotection. These in vitro studies add to our under-
standing of the possible mechanisms of resveratrol-mediated
neuroprotection against various neurotoxins through antiox-
idant and anti-inflammatory properties.

Table 1. In Vitro Examples of Resveratrol Neuroprotection

in vitro model resveratrol treatment stress/exposurea study outcomes ref

mice primary neuronal cultures 1, 3, or 30 μM post-treatment for 24 h OGD for 3 h neuroprotection 50
rat primary neuronal cultures 0.1, 1.0, or 10.0 μM pretreatment for

24 h
OGD for 2 h antiapoptotic 87

rat cortical mixed glial cells 5, 10, 25, 50, or 100 μM post-
treatment for 16 h

OGD for 0.5, 2, or 4 h neuroprotection and anti-
inflammation

104

rat endothelial cultures 100 nM to 10 μM pretreatment for
3 days

OGD for 3.5 h antioxidation 36

HT22 cells 10 μM cotreatment for 24 h 4 mM glutamate for 24 h direct and indirect antioxidation 55
PC12 cells 25 μM pretreatment 50 μM DTPA−Fe2+ and 1 mM t-BuOOH

for 2 h
antioxidation and antimutagenic 51

15 μM pretreatment for 6 h H2O2 for 12 h antioxidation, anti-inflammation,
anticarcinogenic

62

5, 10, or 25 μM pre- or post-treatment
for 24 h

OGD for 6 h neuroprotection 49

PC12 cells cocultured with N9
microglia

100 μM pretreatment for 3 h LPS 1 μg/mL for 24 h antiapoptotic 107

organotypic hippocampal slice
cultures

10, 25, or 50 μM pretreatment for
24 h

OGD for 1 h neuroprotection 47

neonatal rat midbrain slice
cultures

10−100 μM sodium azide, thrombin or N-methyl-N-
nitroguanidine

neuroprotection 52

rat hippocampal slice cultures 100 μM for 20 min OGD for 20 min antioxidation 48
aDTPA, diethylenetriaminepentaacetic acid; H2O2, hydrogen peroxide; LPS, lipopolysaccharide; OGD, oxygen−glucose deprivation; t-BuOOH, tert-
butyl hydroperoxide.
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■ EVIDENCE OF RESVERATROL NEUROPROTECTIVE
PROPERTIES: IN VIVO MODELS OF STROKE

The promising neuroprotective properties of resveratrol, as
shown by initial in vitro studies, has been validated by some in
vivo studies. The experimental characteristics (stroke model,
route of administration, dosage, time of administration, etc.)
and neuroprotective outcome of resveratrol for individual in
vivo studies have been outlined in Table 2.
In rodent stroke models, pre-, post- and delayed post-

treatment with resveratrol showed neuroprotective effects as
indicated by reduced infarct volume and brain water
content.63−66 Temporary bilateral common carotid artery
occlusion (BCCAO) in rats results in a global ischemia in
which neurons of the CA1 area of the hippocampus are
selectively degenerated. Treatment with 10−100 mg/kg of
resveratrol before BCCAO protected neurons in the CA1
region through the putative induction of SIRT1 activation.67

Similarly, resveratrol (30 mg/kg during or shortly after
BCCAO) treatment in gerbils showed neuroprotection by
attenuating brain damage and improved cognitive outcome.68

Further, pretreatment with 50 mg/kg of resveratrol for 7 days
was shown to be neuroprotective and significantly reduced the
infarct area in mice.69,70 Resveratrol, 20 mg/kg administered via
intraperitoneal,71 intravenous,63 and oral61 routes during and
following ischemic injury were found to inhibit the insult-
induced brain damage in rats. There is also evidence that
resveratrol may improve behavioral and cognitive performance
in neonatal and adult neurological disorders.72−74 The

administration of resveratrol to rats was associated with
improved histological, motor, and cognitive functions as
measured by scoring the postural reflex, forelimb placing,
corner test, foot-fault test, and performance in the Morris water
maze.75,76 Intracerebral and subarachnoid hemorrhages repre-
sent other forms of stroke in which 10 mg/kg of resveratrol
treatment has also shown neuroprotection during pre- and
post-treatment.77 The most effective treatment regimen for
both adult and neonatal animal models includes resveratrol
administration during or immediately after the insult, although
the extent of neuroprotection seems smaller after delayed
administration.72,78 In neonatal models of cerebral injury
chronic treatment with resveratrol for 21 days showed less
motor impairment and significantly reduced infarct volume.71,74

Resveratrol, given prior to or after an insult in neonatal mice
and rats, reduced the infarct volume after permanent and
temporary middle cerebral artery occlusion (MCAO). Neuro-
protection by resveratrol persisted when brain infarcts were
assessed at 4, 6, and 10 weeks after MCA occlusion.61,71,78

In the majority of studies, brain damage was measured only
for 1−7 days after insult. Research involving extended measures
for the neuroprotective effect of resveratrol administration is
warranted because brain injuries such as hypoxic−ischemic
insult are known to evolve over a period of 6−12 weeks and
possibly longer.79 Delayed outcome of early treatment of 90
mg/kg of resveratrol in an experimental model of hypoxic−
ischemic encephalopathy was investigated and confirms that
resveratrol-treated animals performed better than control

Table 2. In Vivo Examples of Resveratrol Neuroprotectiona

in vivo model
resveratrol treatment

(route) dosing schedule study outcomes ref

neonatal mice
(H−I)

0.002, 0.02, or
0.2 mg/kg (ip)

3 different time points: 24 h before H−I; 10
min before H−I; 3 h after H−I

reduced tissue loss 74

mouse MCAO 50 mg/kg (iv) daily for 7 days neuroprotection 70
20 mg/kg (po) acute, 2 h before stroke; chronic, daily for

7 days
neuroprotection from free-radical or excitotoxicity damage 61

50 mg/kg (po) daily for 7 days before stroke reduced neuronal injury 69
0.068, 0.68, or
6.8 mg/kg; (ip)

single dose after stroke neuroprotection with extended therapeutic window 50

1, 2.5, or 5 mg/kg (iv) 3 or 6 h after stroke neuroprotection and anti-inflammation 78
20 mg/kg (po) for 3 days after stroke neuroprotection 106

rat MCAO 30 mg/kg (ip) first dose 3 h post-stroke and subsequent daily
dose for 4 days

neuroprotection and antiapoptotic 94

30 mg/kg (ip) pretreated for 7 days neuroprotection 146
0.001 or 0.0001
mg/kg (iv)

single dose 15 min before ischemia vasodilation, antioxidation 138

0.001 or 0.0001
mg/kg (iv)

single dose at reperfusion antioxidation 141

0.1 mg/kg (iv) twice, 15 min preocclusion and at the time of
reperfusion (2 h postocclusion)

reduced infarct volume and edema, improved neurological
deficits, anatomical and functional preservation

63

15 or 30 mg/kg (ip) pretreated for 7 days and 30 min before
MCAO

reduced neurological score, infarct volume, and brain water
content

66

20 mg/kg (ip) pretreated for 21 days decreased infarct volume and antioxidation 71
oxy-resveratrol, 10 or
20 mg/kg (ip)

twice, immediately after MCAO and at
reperfusion

reduced infarct volume, improved neurological deficits 64

rat SAH 10 mg/kg (iv) daily for 3 days after hemorrhage neuroprotection, antioxidation and vasodilation 77
rat global
ischemia

10, 50, or 100 mg/kg
(ip)

pretreated for 48 h neuroprotection 67

rat recurrent
ischemic stroke

25 mg/kg (po) three doses of resveratrol given daily after
stroke

neuro- and cardio-protection 36

gerbil BCCAO 30 mg/kg (ip) twice, during and shortly after CCA occlusion decreased delayed neuronal cell death and glial cell activation,
can cross blood−brain barrier

68

aip, intraperitoneally; iv, intravenously; po, orally; BCCAO, bilateral common carotid artery occlusion; H−I, hypoxia−ischemia; MCAO, middle
cerebral artery occlusion; SAH, subarachnoid hemorrhage.
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groups, and there was a significant reduction in infarct and
preservation of myelination.72

Positive outcomes of resveratrol were found to be dependent
on gender and dietary nutrients.80,81 After cerebral injury, both
sexes showed reduced cerebral infarct volume and improved
neurological outcomes with 5 mg/kg of resveratrol, but the
protection was more prominent in females.78,80 These findings
could suggest that neonatal females are sensitive to caspase-
mediated cell death pathways, because its inhibition signifi-
cantly reduces injury after hypoxic ischemic insult.82 One
possible hypothesis that has been suggested for resveratrol
behaving differently is that there is a similar structure to
synthetic estrogen or down regulating oxidative stress response
genes. Liberto and colleagues showed that resveratrol
significantly increased the dopamine transporter in female
striatum and not males and concluded that this difference is
because resveratrol has similar chemical structure to synthetic
estrogen diethylstilbestrol.83

■ NEUROPROTECTIVE EFFECTS OF RESVERATROL
VIA ANTI-APOPTOSIS PATHWAY

Ischemic attack leads to oxidative stress through ROS
generation, glutamate toxicity, and depletion of the intracellular
antioxidant enzyme system (Figure 2). In addition to oxidative
stress mediated cellular death, necrosis (energy depletion) and
apoptosis (programmed cell death) are important in ischemic
insult. In vitro and in vivo studies established that various
cellular or biochemical pathways are involved in mitochondrial-
mediated apoptotic signaling. Following stroke, cell death in
male mice is triggered by poly-ADP-ribose polymerase
activation and nuclear translocation of apoptosis-inducing
factor84,85 leading to caspase-independent apoptosis, and in
females there is an early release of cytochrome c and increased
caspase activation.86

Antiapoptotic Properties of Resveratrol in Vitro.
OGD/reperfusion-induced apoptosis in primary neuronal
cultures and resveratrol pretreatment (0.1, 1, and 10 μM)
reduced cell death. In this study, resveratrol was found to
prevent the overexpression of caspase-3 and caspase-12 mRNA
in a concentration-dependent manner.87 Resveratrol treatment
reduces caspase-3 activation in neonatal mouse brain hypoxic
ischemic injury and thus promotes cell survival.88 In the
neuroblastoma SH-SY5Y cell line, excess dopamine-induced
cell death was inhibited by 50 μM resveratrol through
ameliorating intracellular oxidative stress and enhancing the
activity of prosurvival gene Bcl-2, thus damping the apoptotic
pathways.89 Recently, we have shown that OGD significantly
up-regulated caspase-3 expression in PC12 cells and pre-, post-,
and whole treatment with 25 μM resveratrol was protective and
reduced caspase-3 levels.90 Cell death following OGD and
reperfusion is due to cytochrome c released from mitochondria
and activation of caspase-3, decreased mitochondrial membrane
potential, and an increased levels of pro-apoptotic gene Bax.
Resveratrol at 1−30 μM prevented cell death in dopaminergic
neurons, fibroblasts, human periodontal ligament cells, and
PC12 cells by inhibiting ROS production, caspase-3, and Bax
activities and by up-regulating Bcl-2.53 In addition, admin-
istration of 50 μM resveratrol attenuates apoptosis by up-
regulating Bcl-2 and suppresses Bax and caspase-3 in OGD and
reoxygenation models. In vitro hypoxia reoxygenation studies
showed that resveratrol prevents alteration of mitochondrial
function in a concentration-dependent manner by maintaining
respiratory control and ROS generation as evident by reduction

of cytochrome c release and membrane potential collapse.91 In
summary, resveratrol has been found to regulate the expression
of Bax, Bcl-2, and caspase-3 proteins in mitochondria and
suppress the mitochondrial death pathway in in vitro hypoxia/
OGD models.

Antiapoptotic Properties of Resveratrol in Vivo.
Resveratrol treatment reduces caspase-3 activation in rats
subjected to transient middle cerebral artery occlusion leading
to increased cell survival.64 It has been shown that lower doses
of resveratrol (2.5 or 5 mg/kg) mediate survival signals by up-
regulating antiapoptotic and prosurvival Akt and Bcl-2 gene in
rats subjected to myocardial ischemia.92 Resveratrol treatment
has been shown to restore the disrupted mitochondrial integrity
after cerebral ischemic damage63 and increase the activity of
mitochondrial complex I−IV and ATP production in rats.
Additional findings show a decrease in cytochrome c release
and DNA damage with improved anatomical and functional
restoration of the cellular components that make up the
neurovasculature of the brain. Following transient global
ischemia in gerbils, there is an increase in the level of Bcl-2
associated X protein and Bax after 6 h.93 A recent study
suggested that 30 mg/kg of resveratrol reduces the ischemia
reperfusion induced damage in a rat model of pMCAO.
Reduced injury was due to attenuation of apoptosis and
suggests that this prevention was attributed to up-regulating
Bcl-2 and down-regulating Bax in the hippocampus.94 In
summary, these in vivo studies indicate that resveratrol exerts
neuroprotection partially through modulating cell death
pathways affected at large by pro-inflammatory mediators
(Figures 1 and 2).

■ NEUROPROTECTIVE EFFECT OF RESVERATROL
VIA AN ANTI-INFLAMMATORY PATHWAY

Neuroinflammation is an important contributor to the
pathogenesis of neurological disorders (Figure 2). The hallmark
of brain neuroinflammation is the activation of microglia.95,96

Microglia, the resident immune cells in the brain, serve as the
first line of defense when injury or disease occurs and plays a
homeostatic role in the central nervous system.97 Upon
activation, microglia are capable of secreting a range of
proinflammatory factors including cytokines, chemokines,
ROS, reactive nitrogen species, and prostaglandins. The
accumulation of these factors contributes to neuronal damage,
and subsequently, the damaged neurons release debris and
soluble factors, which in turn induce microglial activation
(microgliosis).98 Taken together, the inhibition of microglial
activation may become a promising target for the treatment of
inflammation-mediated neurological disorders. Here, we
summarize the anti-inflammatory activities of resveratrol from
both in vivo and in vitro studies, and highlight the inhibition of
activated microglia, which may serve as a potential mechanism
of neuroprotection.

Anti-inflammatory Properties of Resveratrol in Vitro.
Neuroprotective effects of resveratrol can be seen not only in
cultured neurons but also in primary microglia cultures.99−101

This is supported by data from primary microglia cultures
derived from newborn rat brain and challenged with
lipopolysaccharides (LPS). Resveratrol (up to 50 μM)
effectively inhibited the production of prostaglandin E2
(PGE2) and 8-iso-prostaglandin F2α and suppressed the
expression of cyclooxygenase-1 and microsomal prostaglandin
E synthase-1.99 Additionally, 10 μg/mL resveratrol was also
found to reduce LPS-induced nitric oxide production in

ACS Chemical Neuroscience Review

dx.doi.org/10.1021/cn400094w | ACS Chem. Neurosci. 2013, 4, 1151−11621155



primary microglia.101 In primary mixed-glial cultures derived
from newborn rat brain, 25−100 μM resveratrol provided
neuroprotection via its free radical and ROS-scavenging
capacity.100 By inhibition of nuclear factor NF-κB activation,
resveratrol (up to 20 μM) significantly reduced LPS-induced
release of nitric oxide (NO) and PGE2 in C6 astroglioma
cells.102 Using the N9 microglial cell line, several studies
indicated that resveratrol attenuated LPS-induced phosphor-
ylation of p38 MAPK and degradation of IκB-α, thus reducing
the production of NO and tumor necrosis factor α
(TNFα).100,101 Additionally, neuronal-like PC12 cells and N9
microglia cells were cocultured to study the effect of resveratrol
on LPS-induced neurotoxicity. Results showed that resveratrol
could prevent the apoptosis of dopamine-producing neurons by
inhibiting the production of microglia-derived TNFα and IL-
1β.103 Further, 25 or 50 μM resveratrol has been shown to
suppress IL-6 gene expression and protein secretion in mixed
glial cultures under hypoxia/hypoglycemia conditions.104

Anti-inflammatory Properties of Resveratrol in Vivo.
Attenuation of microglial activation is a therapeutic strategy in
ischemic stroke.105 Administration of 10−40 mg/kg of
resveratrol 3 h after MCAO effectively reduced the increased
expression of the pro-inflammatory cytokines IL-1β and
TNFα,105 and this effect lasted for up to 24 h after reperfusion.
The neuroprotective effect of resveratrol requires peroxisome
proliferator activated receptor-α expression, which may exert
anti-inflammatory effects by antagonizing NF-kB.106 Others
have reported that increases in IL-1β, TNFα, and nitric oxide
production associated with NF-κB signaling and phosphor-
ylation of p38 from activated microglia are inhibited by
resveratrol.101,107 Resveratrol suppressed expression of IL-1β
and TNFα, microglial activation, and ROS production in the
ischemic cortex.78 In cerebral ischemia produced by occlusion
of both common carotid arteries in gerbils, 30 mg/kg of
resveratrol treatment during ischemia and 24 h after ischemia
significantly prevented neuronal cell death and inhibited glial
cell activation.68

Resveratrol administration 3 h after insult during the acute
phase of ischemic stroke reduces brain injury in both male and
female mice at different doses (5 mg/kg for males and 1 mg/kg
for females).78 Administration of resveratrol 6 h after insult was
also effective in decreasing infarct volumes.78 These findings
suggest that suppression of inflammation is associated with the
neuroprotective effects of resveratrol, and resveratrol can be
developed as a therapeutic drug for stroke treatment (Figure 1).
Furthermore, decreased neuroinflammatory properties of
resveratrol can be demonstrated by three mechanisms: (1)
inhibition of ROS production; (2) suppression of MAPK signal
transduction pathways; and (3) activation of the SIRT1
pathways, which in turn could suppress the activation of the
NF-κB signaling pathways. The overall effects of these events
lead to reduced pro-inflammatory mediators, eventually
producing neuroprotection.

■ NEUROPROTECTIVE EFFECT OF RESVERATROL
VIA ANTIOXIDATIVE PATHWAY

Oxidative stress plays an important role in the appearance and
development of neurodegenerative disorders and a number of
protective enzymes including superoxide dismutase, catalase,
glutathione peroxidase, and heme oxygenase essentially
contribute to cellular defense in the brain working against
oxidative stress.108 Resveratrol is reported to be beneficial in
neurological disorders by attenuating this oxidative stress

(Figure 1). The beneficial effects are thought to be due to its
antioxidative properties. Resveratrol attenuates oxidative stress
by directly scavenging free radicals and indirectly increasing
endogenous cellular antioxidant defenses, for example, via
activation of the Keap1−Nrf2 pathway (Figure 2). The brain
has lower antioxidant defenses than other organs such as the
liver and kidney;109 however, Nrf2 is expressed throughout the
brain110 and plays a key role in the cellular defenses against
oxidative stress by regulating the expression of inflammatory
markers and antioxidant enzymes.111,112 Nrf2 also modulates
microglial dynamics113 and protects neurons and astrocytes
from toxic insults.114,115 A study in oligemia model of stress/
stroke using immunohistochemistry showed localization of
Nrf2 in neurons of the cingulate cortex and cerebellar Purkinje
cells.116 Srivastava and colleagues reported the first quantitative
measurements of temporal and spatial Nrf2 distribution in the
brain of rats following stroke by using a novel immunohis-
tochemical technique.117

Normally, under basal conditions, in the absence of cellular
stress, the nuclear content of Nrf2 is small and is largely bound
to Keap1 within the cytoplasm, which anchors and limits Nrf2-
mediated gene expression. Under conditions of chemical/
oxidative stress, the Keap1−Nrf2 complex is dissociated, and
Nrf2 is able to evade Keap1, accumulate within the nucleus, and
trigger antioxidant response element (ARE)-mediated gene
expression and transcription of phase II defense enzymes and
antioxidant stress proteins such as NAD(P)H quinone
oxidoreductase 1 (NQO1), γ-glutamylcysteine synthetase,
HO1, glutathione (GSH)−peroxidase, GSH-S-transferase, and
superoxide dismutase to attenuate oxidative stress. A study
using Nrf2 knockout (Nrf2−/−) mice has confirmed that this
mouse strain has a lower expression of such enzymes and
antioxidant stress proteins, and is more susceptible to oxidative
stress.118−120

The Nrf2/ARE pathway can be activated pharmacologically
and by dietary means.121,122 Nrf2 seems to autoregulate its own
expression through weak ARE-like cis-elements in its
promoter,123 which leads to persistent accumulation of Nrf2
in the nucleus and protracted induction of protective genes in
response to inducers. Resveratrol increases the transcriptional
activity of Nrf2 and up-regulates several ARE-regulated genes
involved in free radical metabolism in an Nrf2-dependent
manner.
Resveratrol was found to be a potential scavenger of

superoxide, hydroxyl, and metal-induced radicals, as well as to
show antioxidant abilities in cells producing ROS, at least in
vitro. It is protective against lipid peroxidation in cell
membranes and DNA damage caused by ROS (Figure 1).
Studies have suggested that continued dietary resveratrol would
also protect against aging and delay age-related cognitive
decline. This finding was linked to the activation of multiple
pathways via elevating cAMP levels, peroxisome proliferator-
activated receptor-gamma coactivator 1α (PGC-1α) activity,
and SIRT1 as previously discussed.124,125 Although resveratrol
seems to attenuate oxidative insult,126 a new finding showed
that LPS-induced activation of microglial NADPH oxidase and
consequent production of superoxide was inhibited by
resveratrol.127

Antioxidative Properties of Resveratrol in Vitro.
Resveratrol exhibits neuroprotection likely by its indirect
neuroprotective effect via activation of Nrf2/ARE pathways.
Resveratrol augmented cellular antioxidant defense through
HO1 induction via Nrf2/ARE signaling in PC12 cells62 and in
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primary neuronal cultures128 from oxidative stress and also
protected cultured hippocampal neurons against nitric oxide-
mediated cell death.129 Nrf2-dependent induction of major
cellular antioxidant enzymes effectively attenuate cellular and
mitochondrial oxidative stress in cultured endothelial
cells.130,131 Furthermore, resveratrol (50 or 100 μM) exerts
beneficial neuroprotective effects through inducing mitochon-
drial manganese superoxide dismutase (MnSOD) expression
and activity in the human fetal lung fibroblast MRC-5 cell
line132 and up-regulates genes involved in antioxidant path-
ways.133 Resveratrol administration attenuates free radical
formation and increases glutathione content and SOD in
PC12 cells receiving OGD and reoxygenation.90 Similarly, 10
μM resveratrol attenuated paraquat-induced ROS production
and strongly activated the Nrf2 signaling pathway to further
induce ARE-dependent cytoprotective genes against the toxicity
and oxidative stress in human bronchial epithelial BEAS-2B
cells.134

Antioxidative Properties of Resveratrol in Vivo. Several
studies have shown that 20−50 μM resveratrol activates the
Nrf2/ARE pathway in different experimental in vivo mod-
els.66,135,136 Previous findings from our laboratory showed that
pretreatment with resveratrol attenuates ischemic injury, and
this effect was obliterated in HO1 knockout mice.61 Similar
findings from other groups showed that resveratrol pretreat-
ment for 7 days significantly attenuated neurological deficits,
infarct volume, and edema. It also reduced the oxidative stress
as indicated by the levels of MDA and SOD and up-regulated
the expression of transcription factor Nrf2 and HO1 after focal
cerebral ischemia/reperfusion injury in rats66 and in PC12
cells.137 Huang et al. showed that 15 min pretreatment with
resveratrol reduces the infarct size following focal cerebral
ischemia in rats.138 A similar effect was shown in which mice
pretreated with 20 mg/kg of resveratrol had decreased motor
impairment and infarct size and a rise in lipid peroxidation with
reduced glutathione levels.71 Further studies suggest that
resveratrol administration suppressed free radical production
in the ischemic cortex of mice139 and also restored the levels of
mitochondrial glutathione and glucose 6-phosphate dehydro-
genase with a significant decrease in mitochondrial lipid
peroxidation in a MCAO model of brain ischemia. This
protection by resveratrol could be attributed to its properties of
reactive oxygen/nitrogen species scavenging63 and augmenta-
tion of antioxidant enzymes.136 Similarly, Shin and colleagues78

showed that resveratrol administration reduces free radical
burst and microglial activation. Dietary resveratrol (1 mg/kg,
oral for 8 weeks) reduced oxidative DNA and glycoxidative
stress in hypertensive male and female rats.80 Likewise, Ungvari
and colleagues showed that resveratrol attenuates mitochon-
drial and cellular oxidative stress induced by hyperglycemia in
endothelial cell cultures, and this was reversed by small
interfering RNA mediated knockdown of Nrf2 or over-
expression of Keap1.140 Resveratrol also reduces nitrosative
damage following ischemia reperfusion injury (Figure 1) via up-
regulating the levels of NO in plasma and endothelial nitric
oxide synthase (eNOS) and down-regulating inducible nitric
oxide synthase (iNOS).141 These studies provide strong
evidence that resveratrol could exert a neuroprotective effect
by modulating antioxidant enzymes and antioxidant responsive
elements.

■ RESVERATROL IN CLINICAL TRIALS

A few human studies have been published in highly respected
academic journals that have explored the potency of resveratrol
to achieve physiological benefits that have been observed in
laboratory models.142,143 Most have focused on characterizing
the pharmacokinetics and metabolism of resveratrol. A rapid
uptake of resveratrol is observed in humans. About 30 min after
a low dose intake, the plasma concentration of resveratrol
peaks, although under fasting conditions, higher doses of
resveratrol showed a delayed peak to 1.5 or 2 h.28 A few
epidemiological studies have suggested that moderate con-
sumption of red wine increases overall survival rates in various
populations.142

While resveratrol content in wine can vary greatly, wine
consumption has been associated with a significant reduction in
the risk for stroke and may help prevent subsequent strokes. A
12 year study from Copenhagen City Heart suggested that the
patients who consumed red wine had 50% less risk of dying
from coronary heart disease or stroke as compared with those
who never consumed wine.19 One main issue with red wine is
that the quantity of active resveratrol varies greatly, and it is
essentially impossible to know the amount consumed without
rigorous analytical studies. Further, the capacity of resveratrol
to alter cerebral blood flow varies in humans as found in a
randomized, double-blind, placebo-controlled, crossover
study.144 A single oral dose of 500 mg of resveratrol increased
cerebral blood flow in the prefrontal cortex during task
performance, as indexed by total concentrations of hemoglobin
in healthy young adults.
In another study, ten healthy humans were given a high-fat,

high-carbohydrate meal on two occasions; one with a placebo
and the other with a supplement containing 100 mg of
resveratrol and 75 mg of grape skin polyphenols.145 The
resveratrol supplement and grape skin polyphenols suppressed
the increase in oxidative stress, suggesting a strong antioxidant
effect, and stimulated the activity of Nrf2 following the meal
along with inducing the expression of the related antioxidant
genes, NQO1 and glutathione S-transferase P1. These effects
are observed despite extremely low bioavailability and rapid
clearance of resveratrol from the circulation. There is little
evidence to support physiological benefits of resveratrol in
humans, and the limited data available provides a strong
justification for further clinical trials.

■ POTENTIAL RECOMMENDATIONS AND
CONCLUSIONS

Resveratrol has encouraging potential and holds great promise
for future development as a therapeutic agent for neuro-
degenerative diseases. Given that many targets for resveratrol
have been identified in vitro and effective doses vary over at
least 3 orders of magnitude in vivo, combined with a relatively
good safety profile, it seems likely that resveratrol acts through
multiple pathways. We believe that healthy individuals may still
benefit from resveratrol’s multipotential to delay aging and
lifestyle-induced decrements in health. Care should be taken to
determine the potential beneficial effects of a conservative
amount of red wine, weighed against other, perhaps non-
beneficial, components in wine. In vitro and in vivo animal data
are promising and highlight the need for human clinical trials,
but are not currently strong enough to justify recommendations
for the chronic administration of resveratrol to human beings.
Future research should aim at exploring the relationship
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between dose, bioavailability, efficacy, and either direct or
indirect mechanisms of actions in humans and further
controlled clinical trials should be conducted to determine
the preventive and therapeutic efficacy of either dietary or
supplemented resveratrol.
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